Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 242(3): 947-959, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38509854

RESUMEN

Many plant populations exhibit synchronous flowering, which can be advantageous in plant reproduction. However, molecular mechanisms underlying flowering synchrony remain poorly understood. We studied the role of known vernalization-response and flower-promoting pathways in facilitating synchronized flowering in Arabidopsis thaliana. Using the vernalization-responsive Col-FRI genotype, we experimentally varied germination dates and daylength among individuals to test flowering synchrony in field and controlled environments. We assessed the activity of flowering regulation pathways by measuring gene expression across leaves produced at different time points during development and through a mutant analysis. We observed flowering synchrony across germination cohorts in both environments and discovered a previously unknown process where flower-promoting and repressing signals are differentially regulated between leaves that developed under different environmental conditions. We hypothesized this mechanism may underlie synchronization. However, our experiments demonstrated that signals originating from sources other than leaves must also play a pivotal role in synchronizing flowering time, especially in germination cohorts with prolonged growth before vernalization. Our results suggest flowering synchrony is promoted by a plant-wide integration of flowering signals across leaves and among organs. To summarize our findings, we propose a new conceptual model of vernalization-induced flowering synchrony and provide suggestions for future research in this field.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Humanos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Vernalización , Flores/fisiología , Reproducción , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo
2.
Front Pharmacol ; 13: 948248, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36569306

RESUMEN

Introduction: Althaea officinalis L.'s root extract (REA) has been used as a medicinal plant since ancient times to treat a cough. Applying REA leads to a protective film that induces a faster regeneration of the lesioned laryngopharyngeal mucosa caused by dry coughs. The buccopharyngeal mucosa is a highly vascularized tissue. In this regard, anti-inflammatory/-oxidant phytochemicals that improve the repair of the lesion site, e.g., neovascularization in the wound, are critical for promoting healing. For this reason, it is essential to investigate the effects of Phytohustil® and REA on different cellular components of the mucosa under conditions similar to those found in the injured mucosa. Thus, this in vitro study investigated the anti-inflammatory/oxidative and pro-migratory properties of Phytohustil® cough syrup on vascular endothelial cells. Methods: Human umbilical vein endothelial cells (HUVEC) were pretreated (24 h) with Phytohustil®, its excipients, or REA, followed by incubation with hydrogen peroxide (H2O2; 1 h; pro-oxidative) or with lipopolysaccharides (LPS; 3 h; pro-inflammatory). Viability and cytotoxicity were measured by PrestoBlue® assay. Intracellular reactive oxygen species (ROS) were quantified with 20-70-dichlorofluorescein diacetate (DCFDA). The release of interleukin 6 (IL6) was determined by enzyme-linked immunosorbent assay (ELISA). The migratory capacity of HUVEC was measured using a scratch assay. Results: Our results show that Phytohustil®, its excipients and REA were not cytotoxic. Pretreatment of HUVEC (24 h) with Phytohustil® or REA inhibited the LPS-activated IL6 release. Phytohustil® or REA inhibited the H2O2-induced cytotoxicity and intracellular ROS production. Phytohustil® and REA significantly stimulated wound closure compared to the control. Conclusion: Our data show that Phytohustil® and REA have anti-inflammatory/-oxidant properties and improve the migratory capacity of vascular endothelial cells. These properties may contribute to the healing characteristics of Phytohustil® and support the benefit of Phytohustil® in patient's treatment of irritated oral mucosa.

3.
Leuk Res ; 117: 106842, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35490594

RESUMEN

Cancer testis antigen PRAME is over-expressed in a variety of malignant cells but is not or minimally expressed in normal non-germ line cells. Adoptive transfer of PRAME-specific T cells is thus under investigation in clinical trials as an innovative therapeutic option for acute myeloid leukemia (AML). However, their senescence-inducing activity has not been studied. This study therefore examines senescence induction in AML cells by PRAME-specific TH1 cells. Analysis of cell cycle and marker expression demonstrate that the supernatants of antigen-stimulated PRAME-specific TH1 cells induce senescence in AML cell lines Kasumi and Nomo-1 through combinative IFN-γ and TNF-α. Additionally IFN-γ and TNF-α secreted by TCR-activated Vδ2+ or CMV-specific T cells can also drive these AML cell lines into terminal growth arrest. G1/0 arrest is also suggested in patient-derived AML by TH1 cytokines or supernatants from Zoledronate-stimulated or aCD3/aCD28-stimulated PBMCs. Thus, we show for the first time that senescence is induced in AML cells by combined IFN-γ and TNF-α, and that these cytokines can be derived either from TCR-engineered CD4+ T cells, or intriguingly from Virus-specific as well as innate Vδ2+ T cells responding to their cognate antigens, namely T-cell responses targeting an antigen that is NOT expressed by the leukemic cells.


Asunto(s)
Citocinas , Leucemia Mieloide Aguda , Humanos , Interferón gamma/metabolismo , Leucemia Mieloide Aguda/terapia , Masculino , Receptores de Antígenos de Linfocitos T , Factor de Necrosis Tumoral alfa
4.
New Phytol ; 234(2): 719-734, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35090191

RESUMEN

The relevance of flowering time variation and plasticity to climate adaptation requires a comprehensive empirical assessment. We investigated natural selection and the genetic architecture of flowering time in Arabidopsis through field experiments in Europe across multiple sites and seasons. We estimated selection for flowering time, plasticity and canalization. Loci associated with flowering time, plasticity and canalization by genome-wide association studies were tested for a geographic signature of climate adaptation. Selection favored early flowering and increased canalization, except at the northernmost site, but was rarely detected for plasticity. Genome-wide association studies revealed significant associations with flowering traits and supported a substantial polygenic inheritance. Alleles associated with late flowering, including functional FRIGIDA variants, were more common in regions experiencing high annual temperature variation. Flowering time plasticity to fall vs spring and summer environments was associated with GIGANTEA SUPPRESSOR 5, which promotes early flowering under decreasing day length and temperature. The finding that late flowering genotypes and alleles are associated with climate is evidence for past adaptation. Real-time phenotypic selection analysis, however, reveals pervasive contemporary selection for rapid flowering in agricultural settings across most of the species range. The response to this selection may involve genetic shifts in environmental cuing compared to the ancestral state.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/genética , Variación Genética , Estudio de Asociación del Genoma Completo , Fenotipo , Estaciones del Año
5.
Am J Bot ; 107(2): 350-363, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32056208

RESUMEN

PREMISE: The timing of germination has profound impacts on fitness, population dynamics, and species ranges. Many plants have evolved responses to seasonal environmental cues to time germination with favorable conditions; these responses interact with temporal variation in local climate to drive the seasonal climate niche and may reflect local adaptation. Here, we examined germination responses to temperature cues in Streptanthus tortuosus populations across an elevational gradient. METHODS: Using common garden experiments, we evaluated differences among populations in response to cold stratification (chilling) and germination temperature and related them to observed germination phenology in the field. We then explored how these responses relate to past climate at each site and the implications of those patterns under future climate change. RESULTS: Populations from high elevations had stronger stratification requirements for germination and narrower temperature ranges for germination without stratification. Differences in germination responses corresponded with elevation and variability in seasonal temperature and precipitation across populations. Further, they corresponded with germination phenology in the field; low-elevation populations germinated in the fall without chilling, whereas high-elevation populations germinated after winter chilling and snowmelt in spring and summer. Climate-change forecasts indicate increasing temperatures and decreasing snowpack, which will likely alter germination cues and timing, particularly for high-elevation populations. CONCLUSIONS: The seasonal germination niche for S. tortuosus is highly influenced by temperature and varies across the elevational gradient. Climate change will likely affect germination timing, which may cascade to influence trait expression, fitness, and population persistence.


Asunto(s)
Señales (Psicología) , Germinación , Cambio Climático , Estaciones del Año , Semillas , Temperatura
6.
Proc Natl Acad Sci U S A ; 117(5): 2526-2534, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31964817

RESUMEN

The seasonal timing of seed germination determines a plant's realized environmental niche, and is important for adaptation to climate. The timing of seasonal germination depends on patterns of seed dormancy release or induction by cold and interacts with flowering-time variation to construct different seasonal life histories. To characterize the genetic basis and climatic associations of natural variation in seed chilling responses and associated life-history syndromes, we selected 559 fully sequenced accessions of the model annual species Arabidopsis thaliana from across a wide climate range and scored each for seed germination across a range of 13 cold stratification treatments, as well as the timing of flowering and senescence. Germination strategies varied continuously along 2 major axes: 1) Overall germination fraction and 2) induction vs. release of dormancy by cold. Natural variation in seed responses to chilling was correlated with flowering time and senescence to create a range of seasonal life-history syndromes. Genome-wide association identified several loci associated with natural variation in seed chilling responses, including a known functional polymorphism in the self-binding domain of the candidate gene DOG1. A phylogeny of DOG1 haplotypes revealed ancient divergence of these functional variants associated with periods of Pleistocene climate change, and Gradient Forest analysis showed that allele turnover of candidate SNPs was significantly associated with climate gradients. These results provide evidence that A. thaliana's germination niche and correlated life-history syndromes are shaped by past climate cycles, as well as local adaptation to contemporary climate.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Semillas/química , Alelos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Frío , Regulación de la Expresión Génica de las Plantas , Germinación , Rasgos de la Historia de Vida , Polimorfismo Genético , Estaciones del Año , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo
7.
Microb Cell Fact ; 19(1): 1, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31898497

RESUMEN

The author's middle name is missed out in the original publication of the article [1]. The correct coauthor's name is Tobias J. Erb.

8.
Microb Cell Fact ; 18(1): 171, 2019 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-31601227

RESUMEN

BACKGROUND: The biological degradation of plastics is a promising method to counter the increasing pollution of our planet with artificial polymers and to develop eco-friendly recycling strategies. Polyethylene terephthalate (PET) is a thermoplast industrially produced from fossil feedstocks since the 1940s, nowadays prevalently used in bottle packaging and textiles. Although established industrial processes for PET recycling exist, large amounts of PET still end up in the environment-a significant portion thereof in the world's oceans. In 2016, Ideonella sakaiensis, a bacterium possessing the ability to degrade PET and use the degradation products as a sole carbon source for growth, was isolated. I. sakaiensis expresses a key enzyme responsible for the breakdown of PET into monomers: PETase. This hydrolase might possess huge potential for the development of biological PET degradation and recycling processes as well as bioremediation approaches of environmental plastic waste. RESULTS: Using the photosynthetic microalga Phaeodactylum tricornutum as a chassis we generated a microbial cell factory capable of producing and secreting an engineered version of PETase into the surrounding culture medium. Initial degradation experiments using culture supernatant at 30 °C showed that PETase possessed activity against PET and the copolymer polyethylene terephthalate glycol (PETG) with an approximately 80-fold higher turnover of low crystallinity PETG compared to bottle PET. Moreover, we show that diatom produced PETase was active against industrially shredded PET in a saltwater-based environment even at mesophilic temperatures (21 °C). The products resulting from the degradation of the PET substrate were mainly terephthalic acid (TPA) and mono(2-hydroxyethyl) terephthalic acid (MHET) estimated to be formed in the micromolar range under the selected reaction conditions. CONCLUSION: We provide a promising and eco-friendly solution for biological decomposition of PET waste in a saltwater-based environment by using a eukaryotic microalga instead of a bacterium as a model system. Our results show that via synthetic biology the diatom P. tricornutum indeed could be converted into a valuable chassis for biological PET degradation. Overall, this proof of principle study demonstrates the potential of the diatom system for future biotechnological applications in biological PET degradation especially for bioremediation approaches of PET polluted seawater.


Asunto(s)
Burkholderiales/metabolismo , Hidrolasas/metabolismo , Microalgas/metabolismo , Tereftalatos Polietilenos/metabolismo , Proteínas Bacterianas/metabolismo , Biodegradación Ambiental , Biología Marina , Microbiología del Agua
9.
Proc Natl Acad Sci U S A ; 116(36): 17890-17899, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31420516

RESUMEN

Contrary to previous assumptions that most mutations are deleterious, there is increasing evidence for persistence of large-effect mutations in natural populations. A possible explanation for these observations is that mutant phenotypes and fitness may depend upon the specific environmental conditions to which a mutant is exposed. Here, we tested this hypothesis by growing large-effect flowering time mutants of Arabidopsis thaliana in multiple field sites and seasons to quantify their fitness effects in realistic natural conditions. By constructing environment-specific fitness landscapes based on flowering time and branching architecture, we observed that a subset of mutations increased fitness, but only in specific environments. These mutations increased fitness via different paths: through shifting flowering time, branching, or both. Branching was under stronger selection, but flowering time was more genetically variable, pointing to the importance of indirect selection on mutations through their pleiotropic effects on multiple phenotypes. Finally, mutations in hub genes with greater connectedness in their regulatory networks had greater effects on both phenotypes and fitness. Together, these findings indicate that large-effect mutations may persist in populations because they influence traits that are adaptive only under specific environmental conditions. Understanding their evolutionary dynamics therefore requires measuring their effects in multiple natural environments.


Asunto(s)
Adaptación Biológica , Arabidopsis/fisiología , Flores/fisiología , Mutación , Selección Genética , Evolución Biológica , Biología Computacional/métodos , Perfilación de la Expresión Génica , Estudios de Asociación Genética , Genotipo , Fenotipo , Estaciones del Año , Transcriptoma
10.
New Phytol ; 216(1): 291-302, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28752957

RESUMEN

Major alleles for seed dormancy and flowering time are well studied, and can interact to influence seasonal timing and fitness within generations. However, little is known about how this interaction controls phenology, life history, and population fitness across multiple generations in natural seasonal environments. To examine how seed dormancy and flowering time shape annual plant life cycles over multiple generations, we established naturally dispersing populations of recombinant inbred lines of Arabidopsis thaliana segregating early and late alleles for seed dormancy and flowering time in a field experiment. We recorded seasonal phenology and fitness of each genotype over 2 yr and several generations. Strong seed dormancy suppressed mid-summer germination in both early- and late-flowering genetic backgrounds. Strong dormancy and late-flowering genotypes were both necessary to confer a winter annual life history; other genotypes were rapid-cycling. Strong dormancy increased within-season fecundity in an early-flowering background, but decreased it in a late-flowering background. However, there were no detectable differences among genotypes in population growth rates. Seasonal phenology, life history, and cohort fitness over multiple generations depend strongly upon interacting genetic variation for dormancy and flowering. However, similar population growth rates across generations suggest that different life cycle genotypes can coexist in natural populations.


Asunto(s)
Arabidopsis/genética , Arabidopsis/fisiología , Flores/fisiología , Variación Genética , Arabidopsis/crecimiento & desarrollo , Biomasa , Genotipo , Germinación , Endogamia , Modelos Lineales , Latencia en las Plantas/genética , Reproducción , Estaciones del Año
11.
Philos Trans R Soc Lond B Biol Sci ; 372(1723)2017 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-28483875

RESUMEN

Extreme events can be a major driver of evolutionary change over geological and contemporary timescales. Outstanding examples are evolutionary diversification following mass extinctions caused by extreme volcanism or asteroid impact. The evolution of organisms in contemporary time is typically viewed as a gradual and incremental process that results from genetic change, environmental perturbation or both. However, contemporary environments occasionally experience strong perturbations such as heat waves, floods, hurricanes, droughts and pest outbreaks. These extreme events set up strong selection pressures on organisms, and are small-scale analogues of the dramatic changes documented in the fossil record. Because extreme events are rare, almost by definition, they are difficult to study. So far most attention has been given to their ecological rather than to their evolutionary consequences. We review several case studies of contemporary evolution in response to two types of extreme environmental perturbations, episodic (pulse) or prolonged (press). Evolution is most likely to occur when extreme events alter community composition. We encourage investigators to be prepared for evolutionary change in response to rare events during long-term field studies.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'.


Asunto(s)
Evolución Biológica , Cambio Climático , Ecosistema , Extinción Biológica , Fósiles
12.
Proc Natl Acad Sci U S A ; 113(20): E2812-21, 2016 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-27140640

RESUMEN

Predicting whether and how populations will adapt to rapid climate change is a critical goal for evolutionary biology. To examine the genetic basis of fitness and predict adaptive evolution in novel climates with seasonal variation, we grew a diverse panel of the annual plant Arabidopsis thaliana (multiparent advanced generation intercross lines) in controlled conditions simulating four climates: a present-day reference climate, an increased-temperature climate, a winter-warming only climate, and a poleward-migration climate with increased photoperiod amplitude. In each climate, four successive seasonal cohorts experienced dynamic daily temperature and photoperiod variation over a year. We measured 12 traits and developed a genomic prediction model for fitness evolution in each seasonal environment. This model was used to simulate evolutionary trajectories of the base population over 50 y in each climate, as well as 100-y scenarios of gradual climate change following adaptation to a reference climate. Patterns of plastic and evolutionary fitness response varied across seasons and climates. The increased-temperature climate promoted genetic divergence of subpopulations across seasons, whereas in the winter-warming and poleward-migration climates, seasonal genetic differentiation was reduced. In silico "resurrection experiments" showed limited evolutionary rescue compared with the plastic response of fitness to seasonal climate change. The genetic basis of adaptation and, consequently, the dynamics of evolutionary change differed qualitatively among scenarios. Populations with fewer founding genotypes and populations with genetic diversity reduced by prior selection adapted less well to novel conditions, demonstrating that adaptation to rapid climate change requires the maintenance of sufficient standing variation.


Asunto(s)
Arabidopsis/genética , Estaciones del Año , Aclimatación , Adaptación Fisiológica/genética , Clima , Cambio Climático
13.
New Phytol ; 210(2): 564-76, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26681345

RESUMEN

The genetic basis of growth and development is often studied in constant laboratory environments; however, the environmental conditions that organisms experience in nature are often much more dynamic. We examined how daily temperature fluctuations, average temperature, day length and vernalization influence the flowering time of 59 genotypes of Arabidopsis thaliana with allelic perturbations known to affect flowering time. For a subset of genotypes, we also assessed treatment effects on morphology and growth. We identified 17 genotypes, many of which have high levels of the floral repressor FLOWERING LOCUS C (FLC), that bolted dramatically earlier in fluctuating - as opposed to constant - warm temperatures (mean = 22°C). This acceleration was not caused by transient VERNALIZATION INSENSITIVE 3-mediated vernalization, differential growth rates or exposure to high temperatures, and was not apparent when the average temperature was cool (mean = 12°C). Further, in constant temperatures, contrary to physiological expectations, these genotypes flowered more rapidly in cool than in warm environments. Fluctuating temperatures often reversed these responses, restoring faster bolting in warm conditions. Independently of bolting time, warm fluctuating temperature profiles also caused morphological changes associated with shade avoidance or 'high-temperature' phenotypes. Our results suggest that previous studies have overestimated the effect of the floral repressor FLC on flowering time by using constant temperature laboratory conditions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Flores/fisiología , Calor , Proteínas de Dominio MADS/metabolismo , Proteínas Represoras/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Frío , Ambiente , Flores/genética , Genotipo , Proteínas de Dominio MADS/genética , Fotoperiodo , Factores de Tiempo
14.
Mol Ecol ; 24(9): 2253-63, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25648134

RESUMEN

Understanding the genetic mechanisms that contribute to range expansion and colonization success within novel environments is important for both invasion biology and predicting species-level responses to changing environments. If populations are adapted to local climates across a species' native range, then climate matching may predict which genotypes will successfully establish in novel environments. We examine evidence for climate adaptation and its role in colonization of novel environments in the model species, Arabidopsis thaliana. We review phenotypic and genomic evidence for climate adaptation within the native range and describe new analyses of fitness data from European accessions introduced to Rhode Island, USA, in spring and fall plantings. Accessions from climates similar to the Rhode Island site had higher fitness indicating a potential role for climate pre-adaptation in colonization success. A genomewide association study (GWAS), and genotypic mean correlations of fitness across plantings suggest the genetic basis of fitness in Rhode Island differs between spring and autumn cohorts, and from previous fitness measurements in European field sites. In general, these observations suggest a scenario of conditional neutrality for loci contributing to colonization success, although there was evidence of a fitness trade-off between fall plantings in Norwich, UK, and Rhode Island. GWAS suggested that antagonistic pleiotropy at a few specific loci may contribute to this trade-off, but this conclusion depended upon the accessions included in the analysis. Increased genomic information and phenotypic information make A. thaliana a model system to test for the genetic basis of colonization success in novel environments.


Asunto(s)
Adaptación Biológica/genética , Arabidopsis/genética , Clima , Aptitud Genética , Genética de Población , Estudios de Asociación Genética , Genoma de Planta , Fenotipo , Polimorfismo de Nucleótido Simple , Rhode Island , Estaciones del Año , Reino Unido
15.
Am Nat ; 185(2): 212-27, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25616140

RESUMEN

Organisms develop through multiple life stages that differ in environmental tolerances. The seasonal timing, or phenology, of life-stage transitions determines the environmental conditions to which each life stage is exposed and the length of time required to complete a generation. Both environmental and genetic factors contribute to phenological variation, yet predicting their combined effect on life cycles across a geographic range remains a challenge. We linked submodels of the plasticity of individual life stages to create an integrated model that predicts life-cycle phenology in complex environments. We parameterized the model for Arabidopsis thaliana and simulated life cycles in four locations. We compared multiple "genotypes" by varying two parameters associated with natural genetic variation in phenology: seed dormancy and floral repression. The model predicted variation in life cycles across locations that qualitatively matches observed natural phenology. Seed dormancy had larger effects on life-cycle length than floral repression, and results suggest that a genetic cline in dormancy maintains a life-cycle length of 1 year across the geographic range of this species. By integrating across life stages, this approach demonstrates how genetic variation in one transition can influence subsequent transitions and the geographic distribution of life cycles more generally.


Asunto(s)
Ambiente , Interacción Gen-Ambiente , Variación Genética , Modelos Biológicos , Desarrollo de la Planta , Arabidopsis , Estadios del Ciclo de Vida , Latencia en las Plantas/genética
16.
Trends Ecol Evol ; 30(2): 66-77, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25534247

RESUMEN

Process-based models of development predict developmental rates and phenology as a function of physiological responses to multiple dynamic environmental factors. These models can be adapted to analyze diverse processes in evolutionary ecology. By linking models across life stages, they can predict life cycles and generation times. By incorporating fitness, they can identify environmental and physiological factors that limit species distributions. By incorporating population variance, they can investigate mechanisms of intraspecific variation or synchronization. By incorporating genetics, they can predict genotype-specific phenology under diverse climatic scenarios and examine causes and consequences of pleiotropy across life stages. With further development, they have the potential to predict genotype-specific ranges and identify key genes involved in determining phenology and fitness in variable and changing environments.


Asunto(s)
Evolución Biológica , Clima , Ecosistema , Estadios del Ciclo de Vida , Modelos Biológicos , Estaciones del Año , Factores de Tiempo
17.
Genes Dev ; 28(15): 1635-40, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25035417

RESUMEN

Relating molecular variation to phenotypic diversity is a central goal in evolutionary biology. In Arabidopsis thaliana, FLOWERING LOCUS C (FLC) is a major determinant of variation in vernalization--the acceleration of flowering by prolonged cold. Here, through analysis of 1307 A. thaliana accessions, we identify five predominant FLC haplotypes defined by noncoding sequence variation. Genetic and transgenic experiments show that they are functionally distinct, varying in FLC expression level and rate of epigenetic silencing. Allelic heterogeneity at this single locus accounts for a large proportion of natural variation in vernalization that contributes to adaptation of A. thaliana.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Variación Genética , Proteínas de Dominio MADS/genética , Adaptación Fisiológica/genética , Epigénesis Genética/genética , Silenciador del Gen , Haplotipos , Plantas Modificadas Genéticamente , Polimorfismo de Nucleótido Simple/genética
18.
Proc Natl Acad Sci U S A ; 111(22): 7906-13, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24843140

RESUMEN

If climate change outpaces the rate of adaptive evolution within a site, populations previously well adapted to local conditions may decline or disappear, and banked seeds from those populations will be unsuitable for restoring them. However, if such adaptational lag has occurred, immigrants from historically warmer climates will outperform natives and may provide genetic potential for evolutionary rescue. We tested for lagging adaptation to warming climate using banked seeds of the annual weed Arabidopsis thaliana in common garden experiments in four sites across the species' native European range: Valencia, Spain; Norwich, United Kingdom; Halle, Germany; and Oulu, Finland. Genotypes originating from geographic regions near the planting site had high relative fitness in each site, direct evidence for broad-scale geographic adaptation in this model species. However, genotypes originating in sites historically warmer than the planting site had higher average relative fitness than local genotypes in every site, especially at the northern range limit in Finland. This result suggests that local adaptive optima have shifted rapidly with recent warming across the species' native range. Climatic optima also differed among seasonal germination cohorts within the Norwich site, suggesting that populations occurring where summer germination is common may have greater evolutionary potential to persist under future warming. If adaptational lag has occurred over just a few decades in banked seeds of an annual species, it may be an important consideration for managing longer-lived species, as well as for attempts to conserve threatened populations through ex situ preservation.


Asunto(s)
Aclimatación/fisiología , Adaptación Fisiológica/fisiología , Arabidopsis/genética , Arabidopsis/fisiología , Evolución Biológica , Calentamiento Global , Aclimatación/genética , Adaptación Fisiológica/genética , Arabidopsis/crecimiento & desarrollo , Europa (Continente) , Aptitud Genética/genética , Aptitud Genética/fisiología , Genotipo , Semillas/genética , Semillas/fisiología
19.
PLoS One ; 8(5): e61075, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23717385

RESUMEN

Life-history traits controlling the duration and timing of developmental phases in the life cycle jointly determine fitness. Therefore, life-history traits studied in isolation provide an incomplete view on the relevance of life-cycle variation for adaptation. In this study, we examine genetic variation in traits covering the major life history events of the annual species Arabidopsis thaliana: seed dormancy, vegetative growth rate and flowering time. In a sample of 112 genotypes collected throughout the European range of the species, both seed dormancy and flowering time follow a latitudinal gradient independent of the major population structure gradient. This finding confirms previous studies reporting the adaptive evolution of these two traits. Here, however, we further analyze patterns of co-variation among traits. We observe that co-variation between primary dormancy, vegetative growth rate and flowering time also follows a latitudinal cline. At higher latitudes, vegetative growth rate is positively correlated with primary dormancy and negatively with flowering time. In the South, this trend disappears. Patterns of trait co-variation change, presumably because major environmental gradients shift with latitude. This pattern appears unrelated to population structure, suggesting that changes in the coordinated evolution of major life history traits is adaptive. Our data suggest that A. thaliana provides a good model for the evolution of trade-offs and their genetic basis.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Latencia en las Plantas , Semillas/crecimiento & desarrollo , Arabidopsis/genética , Evolución Biológica , Europa (Continente) , Flores/genética , Genotipo , Germinación , Fenotipo , Filogeografía , Polimorfismo de Nucleótido Simple , Estaciones del Año , Semillas/genética
20.
Mol Ecol ; 22(13): 3552-66, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23506537

RESUMEN

Selection on quantitative trait loci (QTL) may vary among natural environments due to differences in the genetic architecture of traits, environment-specific allelic effects or changes in the direction and magnitude of selection on specific traits. To dissect the environmental differences in selection on life history QTL across climatic regions, we grew a panel of interconnected recombinant inbred lines (RILs) of Arabidopsis thaliana in four field sites across its native European range. For each environment, we mapped QTL for growth, reproductive timing and development. Several QTL were pleiotropic across environments, three colocalizing with known functional polymorphisms in flowering time genes (CRY2, FRI and MAF2-5), but major QTL differed across field sites, showing conditional neutrality. We used structural equation models to trace selection paths from QTL to lifetime fitness in each environment. Only three QTL directly affected fruit number, measuring fitness. Most QTL had an indirect effect on fitness through their effect on bolting time or leaf length. Influence of life history traits on fitness differed dramatically across sites, resulting in different patterns of selection on reproductive timing and underlying QTL. In two oceanic field sites with high prereproductive mortality, QTL alleles contributing to early reproduction resulted in greater fruit production, conferring selective advantage, whereas alleles contributing to later reproduction resulted in larger size and higher fitness in a continental site. This demonstrates how environmental variation leads to change in both QTL effect sizes and direction of selection on traits, justifying the persistence of allelic polymorphism at life history QTL across the species range.


Asunto(s)
Arabidopsis/genética , Interacción Gen-Ambiente , Sitios de Carácter Cuantitativo , Selección Genética , Alelos , Arabidopsis/clasificación , Arabidopsis/crecimiento & desarrollo , Ambiente , Epistasis Genética , Flores/genética , Flores/crecimiento & desarrollo , Ligamiento Genético , Fenotipo , Polimorfismo Genético , Reproducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...